Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Thys
1
68 kgGodivier
3
71 kgPélissier
4
72 kgFaber
7
89 kgTiberghien
8
65 kgChristophe
9
67 kgSalmon
10
66 kgHostein
11
73 kgHeusghem
12
79 kgLambot
13
69 kgEgg
14
72 kgEngel
16
72 kgTrousselier
17
68 kgMénager
18
76 kgGeorget
19
69 kgDuboc
20
67 kgDeloffre
22
60 kgKippert
23
71 kgNeboux
26
72 kgAllain
28
68 kgDoury
29
62 kg
1
68 kgGodivier
3
71 kgPélissier
4
72 kgFaber
7
89 kgTiberghien
8
65 kgChristophe
9
67 kgSalmon
10
66 kgHostein
11
73 kgHeusghem
12
79 kgLambot
13
69 kgEgg
14
72 kgEngel
16
72 kgTrousselier
17
68 kgMénager
18
76 kgGeorget
19
69 kgDuboc
20
67 kgDeloffre
22
60 kgKippert
23
71 kgNeboux
26
72 kgAllain
28
68 kgDoury
29
62 kg
Weight (KG) →
Result →
89
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | THYS Philippe | 68 |
3 | GODIVIER Marcel | 71 |
4 | PÉLISSIER Henri | 72 |
7 | FABER François | 89 |
8 | TIBERGHIEN Hector | 65 |
9 | CHRISTOPHE Eugène | 67 |
10 | SALMON Félicien | 66 |
11 | HOSTEIN Paul | 73 |
12 | HEUSGHEM Louis | 79 |
13 | LAMBOT Firmin | 69 |
14 | EGG Oscar | 72 |
16 | ENGEL Louis | 72 |
17 | TROUSSELIER Louis | 68 |
18 | MÉNAGER Constant | 76 |
19 | GEORGET Émile | 69 |
20 | DUBOC Paul | 67 |
22 | DELOFFRE Jules | 60 |
23 | KIPPERT Charles | 71 |
26 | NEBOUX Gaston | 72 |
28 | ALLAIN Marcel | 68 |
29 | DOURY Octave | 62 |