Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Barbier
1
79 kgMcLay
2
72 kgLecuisinier
3
65 kgSénéchal
4
77 kgAlaphilippe
6
62 kgSpokes
8
63 kgKerf
9
71 kgBoudat
10
70 kgLe Roux
14
59 kgHník
15
57 kgWarnier
16
71 kgPedrero
18
60 kgRobeet
22
75 kgFrison
23
84 kgPouilly
29
66 kgKonrad
32
64 kgMaurelet
34
56 kgLeveau
35
67 kg
1
79 kgMcLay
2
72 kgLecuisinier
3
65 kgSénéchal
4
77 kgAlaphilippe
6
62 kgSpokes
8
63 kgKerf
9
71 kgBoudat
10
70 kgLe Roux
14
59 kgHník
15
57 kgWarnier
16
71 kgPedrero
18
60 kgRobeet
22
75 kgFrison
23
84 kgPouilly
29
66 kgKonrad
32
64 kgMaurelet
34
56 kgLeveau
35
67 kg
Weight (KG) →
Result →
84
56
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | BARBIER Rudy | 79 |
2 | MCLAY Daniel | 72 |
3 | LECUISINIER Pierre-Henri | 65 |
4 | SÉNÉCHAL Florian | 77 |
6 | ALAPHILIPPE Julian | 62 |
8 | SPOKES Samuel | 63 |
9 | KERF Jerome | 71 |
10 | BOUDAT Thomas | 70 |
14 | LE ROUX Romain | 59 |
15 | HNÍK Karel | 57 |
16 | WARNIER Antoine | 71 |
18 | PEDRERO Antonio | 60 |
22 | ROBEET Ludovic | 75 |
23 | FRISON Frederik | 84 |
29 | POUILLY Félix | 66 |
32 | KONRAD Patrick | 64 |
34 | MAURELET Flavien | 56 |
35 | LEVEAU Jérémy | 67 |