Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Gianetti
1
62 kgEkimov
2
69 kgHervé
3
62 kgSimon
5
70 kgJalabert
6
68 kgBouyer
7
65 kgAuger
8
78 kgLefevre
11
66 kgIvanov
12
73 kgHalgand
14
67 kgDurand
15
76 kgHvastija
16
75 kgDe Waele
17
62 kgRebellin
18
63 kgPeers
24
73 kgVerbrugghe
32
70 kgDe Wolf
34
67 kgBoardman
40
70 kgStreel
46
69 kgSalmon
48
60 kgMadouas
50
70 kg
1
62 kgEkimov
2
69 kgHervé
3
62 kgSimon
5
70 kgJalabert
6
68 kgBouyer
7
65 kgAuger
8
78 kgLefevre
11
66 kgIvanov
12
73 kgHalgand
14
67 kgDurand
15
76 kgHvastija
16
75 kgDe Waele
17
62 kgRebellin
18
63 kgPeers
24
73 kgVerbrugghe
32
70 kgDe Wolf
34
67 kgBoardman
40
70 kgStreel
46
69 kgSalmon
48
60 kgMadouas
50
70 kg
Weight (KG) →
Result →
78
60
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | GIANETTI Mauro | 62 |
2 | EKIMOV Viatcheslav | 69 |
3 | HERVÉ Pascal | 62 |
5 | SIMON François | 70 |
6 | JALABERT Nicolas | 68 |
7 | BOUYER Franck | 65 |
8 | AUGER Ludovic | 78 |
11 | LEFEVRE David | 66 |
12 | IVANOV Sergei | 73 |
14 | HALGAND Patrice | 67 |
15 | DURAND Jacky | 76 |
16 | HVASTIJA Martin | 75 |
17 | DE WAELE Fabien | 62 |
18 | REBELLIN Davide | 63 |
24 | PEERS Chris | 73 |
32 | VERBRUGGHE Rik | 70 |
34 | DE WOLF Steve | 67 |
40 | BOARDMAN Chris | 70 |
46 | STREEL Marc | 69 |
48 | SALMON Benoît | 60 |
50 | MADOUAS Laurent | 70 |