Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Vietto
1
67 kgDignef
2
70 kgLesueur
3
74 kgLevel
4
64 kgButtafocchi
5
75 kgLe Grevès
6
70 kgSpeicher
7
73 kgMagne
8
68 kgFontenay
9
67 kgDeloor
10
72 kgDeloor
11
79 kgHalbourg
13
77 kgMaes
16
70 kgAmberg
17
72 kgBerty
19
76 kgBernard
21
69 kgVervaecke
22
68 kgRenoncé
24
72 kgMarcaillou
25
70 kgPhilip
26
70 kgWierinckx
27
72 kgKraus
29
61 kgHeimann
31
73 kgLachat
35
68 kg
1
67 kgDignef
2
70 kgLesueur
3
74 kgLevel
4
64 kgButtafocchi
5
75 kgLe Grevès
6
70 kgSpeicher
7
73 kgMagne
8
68 kgFontenay
9
67 kgDeloor
10
72 kgDeloor
11
79 kgHalbourg
13
77 kgMaes
16
70 kgAmberg
17
72 kgBerty
19
76 kgBernard
21
69 kgVervaecke
22
68 kgRenoncé
24
72 kgMarcaillou
25
70 kgPhilip
26
70 kgWierinckx
27
72 kgKraus
29
61 kgHeimann
31
73 kgLachat
35
68 kg
Weight (KG) →
Result →
79
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | VIETTO René | 67 |
2 | DIGNEF Antoon | 70 |
3 | LESUEUR Raoul | 74 |
4 | LEVEL Léon | 64 |
5 | BUTTAFOCCHI Adrien | 75 |
6 | LE GREVÈS René | 70 |
7 | SPEICHER Georges | 73 |
8 | MAGNE Pierre | 68 |
9 | FONTENAY Jean | 67 |
10 | DELOOR Alfons | 72 |
11 | DELOOR Gustaaf | 79 |
13 | HALBOURG Louis | 77 |
16 | MAES Sylvère | 70 |
17 | AMBERG Leo | 72 |
19 | BERTY Charles | 76 |
21 | BERNARD René | 69 |
22 | VERVAECKE Félicien | 68 |
24 | RENONCÉ Robert | 72 |
25 | MARCAILLOU Sylvain | 70 |
26 | PHILIP Jean | 70 |
27 | WIERINCKX Robert | 72 |
29 | KRAUS Maurice | 61 |
31 | HEIMANN Theo | 73 |
35 | LACHAT Georges | 68 |