Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Archambaud
1
66 kgFontenay
2
67 kgDeloor
3
72 kgKint
4
74 kgVervaecke
5
68 kgLesueur
6
74 kgEgli
7
72 kgDeloor
8
79 kgDignef
9
70 kgNeuville
11
80 kgButtafocchi
12
75 kgPuppo
14
70 kgCogan
15
68 kgLouyet
16
64 kgRossi
17
76 kgTanneveau
18
66 kgLe Calvez
20
74 kgLemay
21
58 kgBerty
22
76 kgDucazeaux
23
65 kgMeulenberg
27
73 kgDunder
31
64 kg
1
66 kgFontenay
2
67 kgDeloor
3
72 kgKint
4
74 kgVervaecke
5
68 kgLesueur
6
74 kgEgli
7
72 kgDeloor
8
79 kgDignef
9
70 kgNeuville
11
80 kgButtafocchi
12
75 kgPuppo
14
70 kgCogan
15
68 kgLouyet
16
64 kgRossi
17
76 kgTanneveau
18
66 kgLe Calvez
20
74 kgLemay
21
58 kgBerty
22
76 kgDucazeaux
23
65 kgMeulenberg
27
73 kgDunder
31
64 kg
Weight (KG) →
Result →
80
58
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | ARCHAMBAUD Maurice | 66 |
2 | FONTENAY Jean | 67 |
3 | DELOOR Alfons | 72 |
4 | KINT Marcel | 74 |
5 | VERVAECKE Félicien | 68 |
6 | LESUEUR Raoul | 74 |
7 | EGLI Paul | 72 |
8 | DELOOR Gustaaf | 79 |
9 | DIGNEF Antoon | 70 |
11 | NEUVILLE François | 80 |
12 | BUTTAFOCCHI Adrien | 75 |
14 | PUPPO Henri | 70 |
15 | COGAN Pierre | 68 |
16 | LOUYET Léon | 64 |
17 | ROSSI Giulio | 76 |
18 | TANNEVEAU Robert | 66 |
20 | LE CALVEZ Léon | 74 |
21 | LEMAY Fernand | 58 |
22 | BERTY Charles | 76 |
23 | DUCAZEAUX Sauveur | 65 |
27 | MEULENBERG Eloi | 73 |
31 | DUNDER Franz | 64 |