Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Lowie
1
68 kgDisseaux
2
67 kgvan Schendel
3
82 kgJaminet
4
70 kgRebry
6
75 kgBerrendero
7
63 kgLouviot
8
62 kgThiétard
11
68 kgOubron
12
69 kgNeuville
13
80 kgFréchaut
14
78 kgVietto
15
67 kgPassat
16
71 kgPirmez
17
76 kgCloarec
18
78 kgSpapperi
19
70 kgMarcaillou
21
70 kgGianello
22
57 kg
1
68 kgDisseaux
2
67 kgvan Schendel
3
82 kgJaminet
4
70 kgRebry
6
75 kgBerrendero
7
63 kgLouviot
8
62 kgThiétard
11
68 kgOubron
12
69 kgNeuville
13
80 kgFréchaut
14
78 kgVietto
15
67 kgPassat
16
71 kgPirmez
17
76 kgCloarec
18
78 kgSpapperi
19
70 kgMarcaillou
21
70 kgGianello
22
57 kg
Weight (KG) →
Result →
82
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | LOWIE Jules | 68 |
2 | DISSEAUX Albertin | 67 |
3 | VAN SCHENDEL Antoon | 82 |
4 | JAMINET Pierre | 70 |
6 | REBRY Gaston | 75 |
7 | BERRENDERO Julián | 63 |
8 | LOUVIOT Raymond | 62 |
11 | THIÉTARD Louis | 68 |
12 | OUBRON Robert | 69 |
13 | NEUVILLE François | 80 |
14 | FRÉCHAUT Jean | 78 |
15 | VIETTO René | 67 |
16 | PASSAT Raymond | 71 |
17 | PIRMEZ Théo | 76 |
18 | CLOAREC Pierre | 78 |
19 | SPAPPERI Pierre | 70 |
21 | MARCAILLOU Sylvain | 70 |
22 | GIANELLO Dante | 57 |