Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
van Schendel
1
82 kgBerrendero
2
63 kgLowie
3
68 kgJaminet
4
70 kgThiétard
5
68 kgVietto
7
67 kgDisseaux
8
67 kgPassat
11
71 kgSpapperi
12
70 kgRebry
13
75 kgNeuville
15
80 kgPirmez
16
76 kgLouviot
17
62 kgOubron
18
69 kgMarcaillou
19
70 kgCloarec
20
78 kgFréchaut
22
78 kgGianello
24
57 kg
1
82 kgBerrendero
2
63 kgLowie
3
68 kgJaminet
4
70 kgThiétard
5
68 kgVietto
7
67 kgDisseaux
8
67 kgPassat
11
71 kgSpapperi
12
70 kgRebry
13
75 kgNeuville
15
80 kgPirmez
16
76 kgLouviot
17
62 kgOubron
18
69 kgMarcaillou
19
70 kgCloarec
20
78 kgFréchaut
22
78 kgGianello
24
57 kg
Weight (KG) →
Result →
82
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | VAN SCHENDEL Antoon | 82 |
2 | BERRENDERO Julián | 63 |
3 | LOWIE Jules | 68 |
4 | JAMINET Pierre | 70 |
5 | THIÉTARD Louis | 68 |
7 | VIETTO René | 67 |
8 | DISSEAUX Albertin | 67 |
11 | PASSAT Raymond | 71 |
12 | SPAPPERI Pierre | 70 |
13 | REBRY Gaston | 75 |
15 | NEUVILLE François | 80 |
16 | PIRMEZ Théo | 76 |
17 | LOUVIOT Raymond | 62 |
18 | OUBRON Robert | 69 |
19 | MARCAILLOU Sylvain | 70 |
20 | CLOAREC Pierre | 78 |
22 | FRÉCHAUT Jean | 78 |
24 | GIANELLO Dante | 57 |