Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Merckx
1
74 kgPoulidor
2
71 kgAnquetil
3
70 kgJanssen
6
76 kgVasseur
10
67 kgGimondi
11
78 kgPijnen
21
72 kgBalmamion
23
67 kgSteevens
28
73 kgDierickx
37
74 kgDolman
44
71 kgDaler
46
85 kgRosiers
58
78 kgPfenninger
60
70 kgSwerts
65
75 kgGodefroot
73
73 kgAbrahamian
74
57 kg
1
74 kgPoulidor
2
71 kgAnquetil
3
70 kgJanssen
6
76 kgVasseur
10
67 kgGimondi
11
78 kgPijnen
21
72 kgBalmamion
23
67 kgSteevens
28
73 kgDierickx
37
74 kgDolman
44
71 kgDaler
46
85 kgRosiers
58
78 kgPfenninger
60
70 kgSwerts
65
75 kgGodefroot
73
73 kgAbrahamian
74
57 kg
Weight (KG) →
Result →
85
57
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
2 | POULIDOR Raymond | 71 |
3 | ANQUETIL Jacques | 70 |
6 | JANSSEN Jan | 76 |
10 | VASSEUR Alain | 67 |
11 | GIMONDI Felice | 78 |
21 | PIJNEN René | 72 |
23 | BALMAMION Franco | 67 |
28 | STEEVENS Harry | 73 |
37 | DIERICKX André | 74 |
44 | DOLMAN Evert | 71 |
46 | DALER Jiří | 85 |
58 | ROSIERS Roger | 78 |
60 | PFENNINGER Louis | 70 |
65 | SWERTS Roger | 75 |
73 | GODEFROOT Walter | 73 |
74 | ABRAHAMIAN Stéphane | 57 |