Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -11.2 * weight + 1471
This means that on average for every extra kilogram weight a rider loses -11.2 positions in the result.
Merckx
1
74 kgAnquetil
3
70 kgGimondi
4
78 kgPoulidor
6
71 kgJanssen
8
76 kgPijnen
10
72 kgSteevens
990
73 kgDaler
990
85 kgRosiers
990
78 kgDolman
990
71 kgVan Looy
990
73 kgVasseur
990
67 kgBalmamion
990
67 kgDierickx
990
74 kgPfenninger
990
70 kgSwerts
990
75 kgGodefroot
990
73 kgAbrahamian
990
57 kg
1
74 kgAnquetil
3
70 kgGimondi
4
78 kgPoulidor
6
71 kgJanssen
8
76 kgPijnen
10
72 kgSteevens
990
73 kgDaler
990
85 kgRosiers
990
78 kgDolman
990
71 kgVan Looy
990
73 kgVasseur
990
67 kgBalmamion
990
67 kgDierickx
990
74 kgPfenninger
990
70 kgSwerts
990
75 kgGodefroot
990
73 kgAbrahamian
990
57 kg
Weight (KG) →
Result →
85
57
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
3 | ANQUETIL Jacques | 70 |
4 | GIMONDI Felice | 78 |
6 | POULIDOR Raymond | 71 |
8 | JANSSEN Jan | 76 |
10 | PIJNEN René | 72 |
990 | STEEVENS Harry | 73 |
990 | DALER Jiří | 85 |
990 | ROSIERS Roger | 78 |
990 | DOLMAN Evert | 71 |
990 | VAN LOOY Rik | 73 |
990 | VASSEUR Alain | 67 |
990 | BALMAMION Franco | 67 |
990 | DIERICKX André | 74 |
990 | PFENNINGER Louis | 70 |
990 | SWERTS Roger | 75 |
990 | GODEFROOT Walter | 73 |
990 | ABRAHAMIAN Stéphane | 57 |