Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 4.6 * weight + 515
This means that on average for every extra kilogram weight a rider loses 4.6 positions in the result.
Janssen
5
76 kgKrekels
6
73 kgPeffgen
7
67 kgZoetemelk
990
68 kgDierickx
990
74 kgMerckx
990
74 kgPoulidor
990
71 kgBracke
990
79 kgSwerts
990
75 kgPijnen
990
72 kgKarstens
990
74 kgSteevens
990
73 kgMortensen
990
70 kgVan Looy
990
73 kgDolman
990
71 kgRitter
990
74 kgVasseur
990
67 kgSchutz
990
72 kgJansen
990
70 kgPettersson
990
75 kgBramucci
990
70 kg
5
76 kgKrekels
6
73 kgPeffgen
7
67 kgZoetemelk
990
68 kgDierickx
990
74 kgMerckx
990
74 kgPoulidor
990
71 kgBracke
990
79 kgSwerts
990
75 kgPijnen
990
72 kgKarstens
990
74 kgSteevens
990
73 kgMortensen
990
70 kgVan Looy
990
73 kgDolman
990
71 kgRitter
990
74 kgVasseur
990
67 kgSchutz
990
72 kgJansen
990
70 kgPettersson
990
75 kgBramucci
990
70 kg
Weight (KG) →
Result →
79
67
5
990
# | Rider | Weight (KG) |
---|---|---|
5 | JANSSEN Jan | 76 |
6 | KREKELS Jan | 73 |
7 | PEFFGEN Wilfried | 67 |
990 | ZOETEMELK Joop | 68 |
990 | DIERICKX André | 74 |
990 | MERCKX Eddy | 74 |
990 | POULIDOR Raymond | 71 |
990 | BRACKE Ferdinand | 79 |
990 | SWERTS Roger | 75 |
990 | PIJNEN René | 72 |
990 | KARSTENS Gerben | 74 |
990 | STEEVENS Harry | 73 |
990 | MORTENSEN Leif | 70 |
990 | VAN LOOY Rik | 73 |
990 | DOLMAN Evert | 71 |
990 | RITTER Ole | 74 |
990 | VASSEUR Alain | 67 |
990 | SCHUTZ Edy | 72 |
990 | JANSEN Harrie | 70 |
990 | PETTERSSON Sture | 75 |
990 | BRAMUCCI Giovanni | 70 |