Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Merckx
1
74 kgPettersson
2
75 kgPettersson
5
67 kgMourioux
10
71 kgKrekels
12
73 kgMortensen
13
70 kgHarrison
15
73 kgPoulidor
17
71 kgPettersson
23
75 kgBilsland
26
73 kgJolly
31
76 kgTschan
32
68 kgSchleck
34
72 kgSwerts
38
75 kgVasseur
46
67 kgPijnen
49
72 kgJansen
51
70 kgSteevens
58
73 kg
1
74 kgPettersson
2
75 kgPettersson
5
67 kgMourioux
10
71 kgKrekels
12
73 kgMortensen
13
70 kgHarrison
15
73 kgPoulidor
17
71 kgPettersson
23
75 kgBilsland
26
73 kgJolly
31
76 kgTschan
32
68 kgSchleck
34
72 kgSwerts
38
75 kgVasseur
46
67 kgPijnen
49
72 kgJansen
51
70 kgSteevens
58
73 kg
Weight (KG) →
Result →
76
67
1
58
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
2 | PETTERSSON Gösta | 75 |
5 | PETTERSSON Erik | 67 |
10 | MOURIOUX Jacques | 71 |
12 | KREKELS Jan | 73 |
13 | MORTENSEN Leif | 70 |
15 | HARRISON Derek | 73 |
17 | POULIDOR Raymond | 71 |
23 | PETTERSSON Sture | 75 |
26 | BILSLAND William | 73 |
31 | JOLLY Brian | 76 |
32 | TSCHAN Jürgen | 68 |
34 | SCHLECK Johny | 72 |
38 | SWERTS Roger | 75 |
46 | VASSEUR Alain | 67 |
49 | PIJNEN René | 72 |
51 | JANSEN Harrie | 70 |
58 | STEEVENS Harry | 73 |