Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -31.2 * weight + 3096
This means that on average for every extra kilogram weight a rider loses -31.2 positions in the result.
Rosiers
3
78 kgMourioux
7
71 kgMerckx
8
74 kgSwerts
990
75 kgPijnen
990
72 kgVasseur
990
67 kgSchleck
990
72 kgJanssen
990
76 kgSteevens
990
73 kgKrekels
990
73 kgKarstens
990
74 kgPettersson
990
75 kgPettersson
990
67 kgPoulidor
990
71 kgBilsland
990
73 kgTschan
990
68 kgHarrison
990
73 kgJolly
990
76 kg
3
78 kgMourioux
7
71 kgMerckx
8
74 kgSwerts
990
75 kgPijnen
990
72 kgVasseur
990
67 kgSchleck
990
72 kgJanssen
990
76 kgSteevens
990
73 kgKrekels
990
73 kgKarstens
990
74 kgPettersson
990
75 kgPettersson
990
67 kgPoulidor
990
71 kgBilsland
990
73 kgTschan
990
68 kgHarrison
990
73 kgJolly
990
76 kg
Weight (KG) →
Result →
78
67
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | ROSIERS Roger | 78 |
7 | MOURIOUX Jacques | 71 |
8 | MERCKX Eddy | 74 |
990 | SWERTS Roger | 75 |
990 | PIJNEN René | 72 |
990 | VASSEUR Alain | 67 |
990 | SCHLECK Johny | 72 |
990 | JANSSEN Jan | 76 |
990 | STEEVENS Harry | 73 |
990 | KREKELS Jan | 73 |
990 | KARSTENS Gerben | 74 |
990 | PETTERSSON Sture | 75 |
990 | PETTERSSON Erik | 67 |
990 | POULIDOR Raymond | 71 |
990 | BILSLAND William | 73 |
990 | TSCHAN Jürgen | 68 |
990 | HARRISON Derek | 73 |
990 | JOLLY Brian | 76 |