Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 25.3 * weight - 954
This means that on average for every extra kilogram weight a rider loses 25.3 positions in the result.
Mourioux
4
71 kgMortensen
5
70 kgMerckx
990
74 kgSwerts
990
75 kgSchleck
990
72 kgPijnen
990
72 kgVasseur
990
67 kgKarstens
990
74 kgKrekels
990
73 kgPettersson
990
67 kgPettersson
990
75 kgPettersson
990
75 kgPoulidor
990
71 kgTschan
990
68 kgBilsland
990
73 kgJolly
990
76 kgHarrison
990
73 kg
4
71 kgMortensen
5
70 kgMerckx
990
74 kgSwerts
990
75 kgSchleck
990
72 kgPijnen
990
72 kgVasseur
990
67 kgKarstens
990
74 kgKrekels
990
73 kgPettersson
990
67 kgPettersson
990
75 kgPettersson
990
75 kgPoulidor
990
71 kgTschan
990
68 kgBilsland
990
73 kgJolly
990
76 kgHarrison
990
73 kg
Weight (KG) →
Result →
76
67
4
990
# | Rider | Weight (KG) |
---|---|---|
4 | MOURIOUX Jacques | 71 |
5 | MORTENSEN Leif | 70 |
990 | MERCKX Eddy | 74 |
990 | SWERTS Roger | 75 |
990 | SCHLECK Johny | 72 |
990 | PIJNEN René | 72 |
990 | VASSEUR Alain | 67 |
990 | KARSTENS Gerben | 74 |
990 | KREKELS Jan | 73 |
990 | PETTERSSON Erik | 67 |
990 | PETTERSSON Gösta | 75 |
990 | PETTERSSON Sture | 75 |
990 | POULIDOR Raymond | 71 |
990 | TSCHAN Jürgen | 68 |
990 | BILSLAND William | 73 |
990 | JOLLY Brian | 76 |
990 | HARRISON Derek | 73 |