Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 13 * weight - 67
This means that on average for every extra kilogram weight a rider loses 13 positions in the result.
Merckx
4
74 kgDucreux
5
65 kgRosiers
990
78 kgMortensen
990
70 kgKuiper
990
69 kgTischler
990
79 kgGilson
990
70 kgGaida
990
65 kgZoetemelk
990
68 kgConti
990
79 kgPoulidor
990
71 kgBracke
990
79 kgOvion
990
64 kgGodefroot
990
73 kgDierickx
990
74 kgHarrison
990
73 kgLloyd
990
76 kg
4
74 kgDucreux
5
65 kgRosiers
990
78 kgMortensen
990
70 kgKuiper
990
69 kgTischler
990
79 kgGilson
990
70 kgGaida
990
65 kgZoetemelk
990
68 kgConti
990
79 kgPoulidor
990
71 kgBracke
990
79 kgOvion
990
64 kgGodefroot
990
73 kgDierickx
990
74 kgHarrison
990
73 kgLloyd
990
76 kg
Weight (KG) →
Result →
79
64
4
990
# | Rider | Weight (KG) |
---|---|---|
4 | MERCKX Eddy | 74 |
5 | DUCREUX Daniel | 65 |
990 | ROSIERS Roger | 78 |
990 | MORTENSEN Leif | 70 |
990 | KUIPER Hennie | 69 |
990 | TISCHLER Erwin | 79 |
990 | GILSON Roger | 70 |
990 | GAIDA Alfred | 65 |
990 | ZOETEMELK Joop | 68 |
990 | CONTI Tino | 79 |
990 | POULIDOR Raymond | 71 |
990 | BRACKE Ferdinand | 79 |
990 | OVION Régis | 64 |
990 | GODEFROOT Walter | 73 |
990 | DIERICKX André | 74 |
990 | HARRISON Derek | 73 |
990 | LLOYD Dave | 76 |