Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 44.9 * weight - 2559
This means that on average for every extra kilogram weight a rider loses 44.9 positions in the result.
Mortensen
1
70 kgMerckx
2
74 kgPoulidor
3
71 kgZoetemelk
4
68 kgOvion
5
64 kgRosiers
990
78 kgKuiper
990
69 kgGilson
990
70 kgTischler
990
79 kgVan Springel
990
72 kgGaida
990
65 kgConti
990
79 kgBracke
990
79 kgGodefroot
990
73 kgDierickx
990
74 kgLloyd
990
76 kgHarrison
990
73 kg
1
70 kgMerckx
2
74 kgPoulidor
3
71 kgZoetemelk
4
68 kgOvion
5
64 kgRosiers
990
78 kgKuiper
990
69 kgGilson
990
70 kgTischler
990
79 kgVan Springel
990
72 kgGaida
990
65 kgConti
990
79 kgBracke
990
79 kgGodefroot
990
73 kgDierickx
990
74 kgLloyd
990
76 kgHarrison
990
73 kg
Weight (KG) →
Result →
79
64
1
990
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | MORTENSEN Leif | 70 |
| 2 | MERCKX Eddy | 74 |
| 3 | POULIDOR Raymond | 71 |
| 4 | ZOETEMELK Joop | 68 |
| 5 | OVION Régis | 64 |
| 990 | ROSIERS Roger | 78 |
| 990 | KUIPER Hennie | 69 |
| 990 | GILSON Roger | 70 |
| 990 | TISCHLER Erwin | 79 |
| 990 | VAN SPRINGEL Herman | 72 |
| 990 | GAIDA Alfred | 65 |
| 990 | CONTI Tino | 79 |
| 990 | BRACKE Ferdinand | 79 |
| 990 | GODEFROOT Walter | 73 |
| 990 | DIERICKX André | 74 |
| 990 | LLOYD Dave | 76 |
| 990 | HARRISON Derek | 73 |