Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 46.6 * weight - 2740
This means that on average for every extra kilogram weight a rider loses 46.6 positions in the result.
Zoetemelk
1
68 kgPoulidor
2
71 kgOvion
3
64 kgVan Springel
6
72 kgMerckx
7
74 kgMortensen
9
70 kgRosiers
990
78 kgKuiper
990
69 kgGilson
990
70 kgTischler
990
79 kgGaida
990
65 kgConti
990
79 kgBracke
990
79 kgGodefroot
990
73 kgDierickx
990
74 kgHarrison
990
73 kgLloyd
990
76 kg
1
68 kgPoulidor
2
71 kgOvion
3
64 kgVan Springel
6
72 kgMerckx
7
74 kgMortensen
9
70 kgRosiers
990
78 kgKuiper
990
69 kgGilson
990
70 kgTischler
990
79 kgGaida
990
65 kgConti
990
79 kgBracke
990
79 kgGodefroot
990
73 kgDierickx
990
74 kgHarrison
990
73 kgLloyd
990
76 kg
Weight (KG) →
Result →
79
64
1
990
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | ZOETEMELK Joop | 68 |
| 2 | POULIDOR Raymond | 71 |
| 3 | OVION Régis | 64 |
| 6 | VAN SPRINGEL Herman | 72 |
| 7 | MERCKX Eddy | 74 |
| 9 | MORTENSEN Leif | 70 |
| 990 | ROSIERS Roger | 78 |
| 990 | KUIPER Hennie | 69 |
| 990 | GILSON Roger | 70 |
| 990 | TISCHLER Erwin | 79 |
| 990 | GAIDA Alfred | 65 |
| 990 | CONTI Tino | 79 |
| 990 | BRACKE Ferdinand | 79 |
| 990 | GODEFROOT Walter | 73 |
| 990 | DIERICKX André | 74 |
| 990 | HARRISON Derek | 73 |
| 990 | LLOYD Dave | 76 |