Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 126
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Zoetemelk
1
68 kgMerckx
3
74 kgPoulidor
5
71 kgKuiper
7
69 kgMortensen
8
70 kgLasa
9
68 kgVan Springel
11
72 kgGimondi
14
78 kgDierickx
20
74 kgSzurkowski
28
77 kgKarstens
44
74 kgDucreux
45
65 kgRodríguez
46
70 kgGaida
47
65 kgBourreau
55
63 kgMytnik
61
75 kgAlgeri
68
69 kgGilson
71
70 kg
1
68 kgMerckx
3
74 kgPoulidor
5
71 kgKuiper
7
69 kgMortensen
8
70 kgLasa
9
68 kgVan Springel
11
72 kgGimondi
14
78 kgDierickx
20
74 kgSzurkowski
28
77 kgKarstens
44
74 kgDucreux
45
65 kgRodríguez
46
70 kgGaida
47
65 kgBourreau
55
63 kgMytnik
61
75 kgAlgeri
68
69 kgGilson
71
70 kg
Weight (KG) →
Result →
78
63
1
71
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | ZOETEMELK Joop | 68 |
| 3 | MERCKX Eddy | 74 |
| 5 | POULIDOR Raymond | 71 |
| 7 | KUIPER Hennie | 69 |
| 8 | MORTENSEN Leif | 70 |
| 9 | LASA Miguel María | 68 |
| 11 | VAN SPRINGEL Herman | 72 |
| 14 | GIMONDI Felice | 78 |
| 20 | DIERICKX André | 74 |
| 28 | SZURKOWSKI Ryszard | 77 |
| 44 | KARSTENS Gerben | 74 |
| 45 | DUCREUX Daniel | 65 |
| 46 | RODRÍGUEZ Martín Emilio | 70 |
| 47 | GAIDA Alfred | 65 |
| 55 | BOURREAU Bernard | 63 |
| 61 | MYTNIK Tadeusz | 75 |
| 68 | ALGERI Pietro | 69 |
| 71 | GILSON Roger | 70 |