Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -22.3 * weight + 2217
This means that on average for every extra kilogram weight a rider loses -22.3 positions in the result.
Merckx
1
74 kgGimondi
5
78 kgKuiper
11
69 kgMortensen
14
70 kgPoulidor
19
71 kgZoetemelk
29
68 kgRodríguez
990
70 kgDierickx
990
74 kgBourreau
990
63 kgSzurkowski
990
77 kgKarstens
990
74 kgDucreux
990
65 kgGaida
990
65 kgLasa
990
68 kgMytnik
990
75 kgAlgeri
990
69 kgGilson
990
70 kg
1
74 kgGimondi
5
78 kgKuiper
11
69 kgMortensen
14
70 kgPoulidor
19
71 kgZoetemelk
29
68 kgRodríguez
990
70 kgDierickx
990
74 kgBourreau
990
63 kgSzurkowski
990
77 kgKarstens
990
74 kgDucreux
990
65 kgGaida
990
65 kgLasa
990
68 kgMytnik
990
75 kgAlgeri
990
69 kgGilson
990
70 kg
Weight (KG) →
Result →
78
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
5 | GIMONDI Felice | 78 |
11 | KUIPER Hennie | 69 |
14 | MORTENSEN Leif | 70 |
19 | POULIDOR Raymond | 71 |
29 | ZOETEMELK Joop | 68 |
990 | RODRÍGUEZ Martín Emilio | 70 |
990 | DIERICKX André | 74 |
990 | BOURREAU Bernard | 63 |
990 | SZURKOWSKI Ryszard | 77 |
990 | KARSTENS Gerben | 74 |
990 | DUCREUX Daniel | 65 |
990 | GAIDA Alfred | 65 |
990 | LASA Miguel María | 68 |
990 | MYTNIK Tadeusz | 75 |
990 | ALGERI Pietro | 69 |
990 | GILSON Roger | 70 |