Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 5.6 * weight + 131
This means that on average for every extra kilogram weight a rider loses 5.6 positions in the result.
Gaida
1
65 kgSzurkowski
8
77 kgKarstens
9
74 kgMerckx
10
74 kgKuiper
12
69 kgGilson
17
70 kgDucreux
18
65 kgAlgeri
20
69 kgPoulidor
990
71 kgZoetemelk
990
68 kgGimondi
990
78 kgRodríguez
990
70 kgMortensen
990
70 kgDierickx
990
74 kgBourreau
990
63 kgLasa
990
68 kgMytnik
990
75 kg
1
65 kgSzurkowski
8
77 kgKarstens
9
74 kgMerckx
10
74 kgKuiper
12
69 kgGilson
17
70 kgDucreux
18
65 kgAlgeri
20
69 kgPoulidor
990
71 kgZoetemelk
990
68 kgGimondi
990
78 kgRodríguez
990
70 kgMortensen
990
70 kgDierickx
990
74 kgBourreau
990
63 kgLasa
990
68 kgMytnik
990
75 kg
Weight (KG) →
Result →
78
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | GAIDA Alfred | 65 |
8 | SZURKOWSKI Ryszard | 77 |
9 | KARSTENS Gerben | 74 |
10 | MERCKX Eddy | 74 |
12 | KUIPER Hennie | 69 |
17 | GILSON Roger | 70 |
18 | DUCREUX Daniel | 65 |
20 | ALGERI Pietro | 69 |
990 | POULIDOR Raymond | 71 |
990 | ZOETEMELK Joop | 68 |
990 | GIMONDI Felice | 78 |
990 | RODRÍGUEZ Martín Emilio | 70 |
990 | MORTENSEN Leif | 70 |
990 | DIERICKX André | 74 |
990 | BOURREAU Bernard | 63 |
990 | LASA Miguel María | 68 |
990 | MYTNIK Tadeusz | 75 |