Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 9.9 * weight - 1
This means that on average for every extra kilogram weight a rider loses 9.9 positions in the result.
Zoetemelk
1
68 kgMerckx
4
74 kgPoulidor
7
71 kgKuiper
9
69 kgLasa
10
68 kgGimondi
990
78 kgRodríguez
990
70 kgMortensen
990
70 kgDierickx
990
74 kgBourreau
990
63 kgSzurkowski
990
77 kgKarstens
990
74 kgDucreux
990
65 kgGaida
990
65 kgMytnik
990
75 kgAlgeri
990
69 kgGilson
990
70 kg
1
68 kgMerckx
4
74 kgPoulidor
7
71 kgKuiper
9
69 kgLasa
10
68 kgGimondi
990
78 kgRodríguez
990
70 kgMortensen
990
70 kgDierickx
990
74 kgBourreau
990
63 kgSzurkowski
990
77 kgKarstens
990
74 kgDucreux
990
65 kgGaida
990
65 kgMytnik
990
75 kgAlgeri
990
69 kgGilson
990
70 kg
Weight (KG) →
Result →
78
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
4 | MERCKX Eddy | 74 |
7 | POULIDOR Raymond | 71 |
9 | KUIPER Hennie | 69 |
10 | LASA Miguel María | 68 |
990 | GIMONDI Felice | 78 |
990 | RODRÍGUEZ Martín Emilio | 70 |
990 | MORTENSEN Leif | 70 |
990 | DIERICKX André | 74 |
990 | BOURREAU Bernard | 63 |
990 | SZURKOWSKI Ryszard | 77 |
990 | KARSTENS Gerben | 74 |
990 | DUCREUX Daniel | 65 |
990 | GAIDA Alfred | 65 |
990 | MYTNIK Tadeusz | 75 |
990 | ALGERI Pietro | 69 |
990 | GILSON Roger | 70 |