Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight + 787
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Maertens
1
65 kgKarstens
2
74 kgGaida
990
65 kgSzurkowski
990
77 kgDierickx
990
74 kgGilson
990
70 kgSchuiten
990
83 kgBracke
990
79 kgLloyd
990
76 kgMerckx
990
74 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgHinault
990
62 kgMartin
990
62 kgBaronchelli
990
72 kgPoulidor
990
71 kgZoetemelk
990
68 kgOvion
990
64 kgGodefroot
990
73 kgPollentier
990
62 kg
1
65 kgKarstens
2
74 kgGaida
990
65 kgSzurkowski
990
77 kgDierickx
990
74 kgGilson
990
70 kgSchuiten
990
83 kgBracke
990
79 kgLloyd
990
76 kgMerckx
990
74 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgHinault
990
62 kgMartin
990
62 kgBaronchelli
990
72 kgPoulidor
990
71 kgZoetemelk
990
68 kgOvion
990
64 kgGodefroot
990
73 kgPollentier
990
62 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MAERTENS Freddy | 65 |
2 | KARSTENS Gerben | 74 |
990 | GAIDA Alfred | 65 |
990 | SZURKOWSKI Ryszard | 77 |
990 | DIERICKX André | 74 |
990 | GILSON Roger | 70 |
990 | SCHUITEN Roy | 83 |
990 | BRACKE Ferdinand | 79 |
990 | LLOYD Dave | 76 |
990 | MERCKX Eddy | 74 |
990 | ROSIERS Roger | 78 |
990 | AJA Gonzalo | 66 |
990 | VAN IMPE Lucien | 59 |
990 | HINAULT Bernard | 62 |
990 | MARTIN Raymond | 62 |
990 | BARONCHELLI Gianbattista | 72 |
990 | POULIDOR Raymond | 71 |
990 | ZOETEMELK Joop | 68 |
990 | OVION Régis | 64 |
990 | GODEFROOT Walter | 73 |
990 | POLLENTIER Michel | 62 |