Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -12.1 * weight + 1560
This means that on average for every extra kilogram weight a rider loses -12.1 positions in the result.
Merckx
1
74 kgMaertens
2
65 kgDierickx
3
74 kgBaronchelli
5
72 kgZoetemelk
7
68 kgBracke
10
79 kgGilson
990
70 kgSzurkowski
990
77 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgKarstens
990
74 kgMartin
990
62 kgHinault
990
62 kgPoulidor
990
71 kgOvion
990
64 kgPollentier
990
62 kgGodefroot
990
73 kg
1
74 kgMaertens
2
65 kgDierickx
3
74 kgBaronchelli
5
72 kgZoetemelk
7
68 kgBracke
10
79 kgGilson
990
70 kgSzurkowski
990
77 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgKarstens
990
74 kgMartin
990
62 kgHinault
990
62 kgPoulidor
990
71 kgOvion
990
64 kgPollentier
990
62 kgGodefroot
990
73 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
2 | MAERTENS Freddy | 65 |
3 | DIERICKX André | 74 |
5 | BARONCHELLI Gianbattista | 72 |
7 | ZOETEMELK Joop | 68 |
10 | BRACKE Ferdinand | 79 |
990 | GILSON Roger | 70 |
990 | SZURKOWSKI Ryszard | 77 |
990 | GAIDA Alfred | 65 |
990 | SCHUITEN Roy | 83 |
990 | LLOYD Dave | 76 |
990 | ROSIERS Roger | 78 |
990 | AJA Gonzalo | 66 |
990 | VAN IMPE Lucien | 59 |
990 | KARSTENS Gerben | 74 |
990 | MARTIN Raymond | 62 |
990 | HINAULT Bernard | 62 |
990 | POULIDOR Raymond | 71 |
990 | OVION Régis | 64 |
990 | POLLENTIER Michel | 62 |
990 | GODEFROOT Walter | 73 |