Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 17.1 * weight - 539
This means that on average for every extra kilogram weight a rider loses 17.1 positions in the result.
Zoetemelk
1
68 kgBaronchelli
3
72 kgMerckx
4
74 kgPollentier
6
62 kgPoulidor
8
71 kgOvion
9
64 kgMaertens
10
65 kgGilson
990
70 kgSzurkowski
990
77 kgDierickx
990
74 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgBracke
990
79 kgRosiers
990
78 kgAja
990
66 kgMartin
990
62 kgHinault
990
62 kgVan Impe
990
59 kgKarstens
990
74 kgGodefroot
990
73 kg
1
68 kgBaronchelli
3
72 kgMerckx
4
74 kgPollentier
6
62 kgPoulidor
8
71 kgOvion
9
64 kgMaertens
10
65 kgGilson
990
70 kgSzurkowski
990
77 kgDierickx
990
74 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgBracke
990
79 kgRosiers
990
78 kgAja
990
66 kgMartin
990
62 kgHinault
990
62 kgVan Impe
990
59 kgKarstens
990
74 kgGodefroot
990
73 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
3 | BARONCHELLI Gianbattista | 72 |
4 | MERCKX Eddy | 74 |
6 | POLLENTIER Michel | 62 |
8 | POULIDOR Raymond | 71 |
9 | OVION Régis | 64 |
10 | MAERTENS Freddy | 65 |
990 | GILSON Roger | 70 |
990 | SZURKOWSKI Ryszard | 77 |
990 | DIERICKX André | 74 |
990 | GAIDA Alfred | 65 |
990 | SCHUITEN Roy | 83 |
990 | LLOYD Dave | 76 |
990 | BRACKE Ferdinand | 79 |
990 | ROSIERS Roger | 78 |
990 | AJA Gonzalo | 66 |
990 | MARTIN Raymond | 62 |
990 | HINAULT Bernard | 62 |
990 | VAN IMPE Lucien | 59 |
990 | KARSTENS Gerben | 74 |
990 | GODEFROOT Walter | 73 |