Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight + 431
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Maertens
2
65 kgMerckx
3
74 kgDierickx
4
74 kgOvion
5
64 kgBaronchelli
7
72 kgZoetemelk
8
68 kgKarstens
9
74 kgHinault
10
62 kgSzurkowski
13
77 kgGilson
990
70 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgBracke
990
79 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgMartin
990
62 kgPoulidor
990
71 kgGodefroot
990
73 kgPollentier
990
62 kg
2
65 kgMerckx
3
74 kgDierickx
4
74 kgOvion
5
64 kgBaronchelli
7
72 kgZoetemelk
8
68 kgKarstens
9
74 kgHinault
10
62 kgSzurkowski
13
77 kgGilson
990
70 kgGaida
990
65 kgSchuiten
990
83 kgLloyd
990
76 kgBracke
990
79 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgMartin
990
62 kgPoulidor
990
71 kgGodefroot
990
73 kgPollentier
990
62 kg
Weight (KG) →
Result →
83
59
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | MAERTENS Freddy | 65 |
3 | MERCKX Eddy | 74 |
4 | DIERICKX André | 74 |
5 | OVION Régis | 64 |
7 | BARONCHELLI Gianbattista | 72 |
8 | ZOETEMELK Joop | 68 |
9 | KARSTENS Gerben | 74 |
10 | HINAULT Bernard | 62 |
13 | SZURKOWSKI Ryszard | 77 |
990 | GILSON Roger | 70 |
990 | GAIDA Alfred | 65 |
990 | SCHUITEN Roy | 83 |
990 | LLOYD Dave | 76 |
990 | BRACKE Ferdinand | 79 |
990 | ROSIERS Roger | 78 |
990 | AJA Gonzalo | 66 |
990 | VAN IMPE Lucien | 59 |
990 | MARTIN Raymond | 62 |
990 | POULIDOR Raymond | 71 |
990 | GODEFROOT Walter | 73 |
990 | POLLENTIER Michel | 62 |