Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -5.7 * weight + 1041
This means that on average for every extra kilogram weight a rider loses -5.7 positions in the result.
Zoetemelk
1
68 kgPollentier
3
62 kgBaronchelli
4
72 kgMerckx
5
74 kgSchuiten
8
83 kgMaertens
10
65 kgPoulidor
12
71 kgGilson
990
70 kgSzurkowski
990
77 kgDierickx
990
74 kgGaida
990
65 kgBracke
990
79 kgLloyd
990
76 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgMartin
990
62 kgHinault
990
62 kgOvion
990
64 kgGodefroot
990
73 kg
1
68 kgPollentier
3
62 kgBaronchelli
4
72 kgMerckx
5
74 kgSchuiten
8
83 kgMaertens
10
65 kgPoulidor
12
71 kgGilson
990
70 kgSzurkowski
990
77 kgDierickx
990
74 kgGaida
990
65 kgBracke
990
79 kgLloyd
990
76 kgRosiers
990
78 kgAja
990
66 kgVan Impe
990
59 kgMartin
990
62 kgHinault
990
62 kgOvion
990
64 kgGodefroot
990
73 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
3 | POLLENTIER Michel | 62 |
4 | BARONCHELLI Gianbattista | 72 |
5 | MERCKX Eddy | 74 |
8 | SCHUITEN Roy | 83 |
10 | MAERTENS Freddy | 65 |
12 | POULIDOR Raymond | 71 |
990 | GILSON Roger | 70 |
990 | SZURKOWSKI Ryszard | 77 |
990 | DIERICKX André | 74 |
990 | GAIDA Alfred | 65 |
990 | BRACKE Ferdinand | 79 |
990 | LLOYD Dave | 76 |
990 | ROSIERS Roger | 78 |
990 | AJA Gonzalo | 66 |
990 | VAN IMPE Lucien | 59 |
990 | MARTIN Raymond | 62 |
990 | HINAULT Bernard | 62 |
990 | OVION Régis | 64 |
990 | GODEFROOT Walter | 73 |