Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Hinault
2
62 kgZoetemelk
3
68 kgKuiper
7
69 kgDuclos-Lassalle
8
73 kgNilsson
10
63 kgKelly
12
77 kgBittinger
13
69 kgBernaudeau
15
64 kgvan Vliet
22
65 kgThaler
23
60 kgRosiers
24
78 kgden Hertog
25
76 kgRaas
27
72 kgLasa
29
68 kgvan den Hoek
43
77 kgBracke
59
79 kgMcCormack
64
57 kg
2
62 kgZoetemelk
3
68 kgKuiper
7
69 kgDuclos-Lassalle
8
73 kgNilsson
10
63 kgKelly
12
77 kgBittinger
13
69 kgBernaudeau
15
64 kgvan Vliet
22
65 kgThaler
23
60 kgRosiers
24
78 kgden Hertog
25
76 kgRaas
27
72 kgLasa
29
68 kgvan den Hoek
43
77 kgBracke
59
79 kgMcCormack
64
57 kg
Weight (KG) →
Result →
79
57
2
64
# | Rider | Weight (KG) |
---|---|---|
2 | HINAULT Bernard | 62 |
3 | ZOETEMELK Joop | 68 |
7 | KUIPER Hennie | 69 |
8 | DUCLOS-LASSALLE Gilbert | 73 |
10 | NILSSON Sven-Åke | 63 |
12 | KELLY Sean | 77 |
13 | BITTINGER René | 69 |
15 | BERNAUDEAU Jean-René | 64 |
22 | VAN VLIET Leo | 65 |
23 | THALER Klaus-Peter | 60 |
24 | ROSIERS Roger | 78 |
25 | DEN HERTOG Fedor | 76 |
27 | RAAS Jan | 72 |
29 | LASA Miguel María | 68 |
43 | VAN DEN HOEK Aad | 77 |
59 | BRACKE Ferdinand | 79 |
64 | MCCORMACK Alan | 57 |