Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight + 817
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Zoetemelk
2
68 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgKuiper
990
69 kgBernaudeau
990
64 kgHinault
990
62 kgBracke
990
79 kgMcCormack
990
57 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgvan Vliet
990
65 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgBittinger
990
69 kgKelly
990
77 kg
2
68 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgKuiper
990
69 kgBernaudeau
990
64 kgHinault
990
62 kgBracke
990
79 kgMcCormack
990
57 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgvan Vliet
990
65 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgBittinger
990
69 kgKelly
990
77 kg
Weight (KG) →
Result →
79
57
2
990
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | ZOETEMELK Joop | 68 |
| 990 | RAAS Jan | 72 |
| 990 | THALER Klaus-Peter | 60 |
| 990 | VAN DEN HOEK Aad | 77 |
| 990 | KUIPER Hennie | 69 |
| 990 | BERNAUDEAU Jean-René | 64 |
| 990 | HINAULT Bernard | 62 |
| 990 | BRACKE Ferdinand | 79 |
| 990 | MCCORMACK Alan | 57 |
| 990 | DEN HERTOG Fedor | 76 |
| 990 | LASA Miguel María | 68 |
| 990 | NILSSON Sven-Åke | 63 |
| 990 | VAN VLIET Leo | 65 |
| 990 | DUCLOS-LASSALLE Gilbert | 73 |
| 990 | ROSIERS Roger | 78 |
| 990 | BITTINGER René | 69 |
| 990 | KELLY Sean | 77 |