Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.3 * weight + 644
This means that on average for every extra kilogram weight a rider loses 3.3 positions in the result.
den Hertog
1
76 kgThaler
2
60 kgKuiper
990
69 kgRaas
990
72 kgvan den Hoek
990
77 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgLasa
990
68 kgvan Vliet
990
65 kgZoetemelk
990
68 kgNilsson
990
63 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
1
76 kgThaler
2
60 kgKuiper
990
69 kgRaas
990
72 kgvan den Hoek
990
77 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgLasa
990
68 kgvan Vliet
990
65 kgZoetemelk
990
68 kgNilsson
990
63 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
57
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DEN HERTOG Fedor | 76 |
2 | THALER Klaus-Peter | 60 |
990 | KUIPER Hennie | 69 |
990 | RAAS Jan | 72 |
990 | VAN DEN HOEK Aad | 77 |
990 | HINAULT Bernard | 62 |
990 | BERNAUDEAU Jean-René | 64 |
990 | MCCORMACK Alan | 57 |
990 | BRACKE Ferdinand | 79 |
990 | LASA Miguel María | 68 |
990 | VAN VLIET Leo | 65 |
990 | ZOETEMELK Joop | 68 |
990 | NILSSON Sven-Åke | 63 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | ROSIERS Roger | 78 |
990 | KELLY Sean | 77 |
990 | BITTINGER René | 69 |