Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -10.4 * weight + 1654
This means that on average for every extra kilogram weight a rider loses -10.4 positions in the result.
Kelly
2
77 kgKuiper
990
69 kgThaler
990
60 kgvan den Hoek
990
77 kgRaas
990
72 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgden Hertog
990
76 kgLasa
990
68 kgvan Vliet
990
65 kgZoetemelk
990
68 kgNilsson
990
63 kgRosiers
990
78 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
2
77 kgKuiper
990
69 kgThaler
990
60 kgvan den Hoek
990
77 kgRaas
990
72 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgden Hertog
990
76 kgLasa
990
68 kgvan Vliet
990
65 kgZoetemelk
990
68 kgNilsson
990
63 kgRosiers
990
78 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
57
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | KELLY Sean | 77 |
990 | KUIPER Hennie | 69 |
990 | THALER Klaus-Peter | 60 |
990 | VAN DEN HOEK Aad | 77 |
990 | RAAS Jan | 72 |
990 | HINAULT Bernard | 62 |
990 | BERNAUDEAU Jean-René | 64 |
990 | MCCORMACK Alan | 57 |
990 | BRACKE Ferdinand | 79 |
990 | DEN HERTOG Fedor | 76 |
990 | LASA Miguel María | 68 |
990 | VAN VLIET Leo | 65 |
990 | ZOETEMELK Joop | 68 |
990 | NILSSON Sven-Åke | 63 |
990 | ROSIERS Roger | 78 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | BITTINGER René | 69 |