Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 5.7 * weight + 538
This means that on average for every extra kilogram weight a rider loses 5.7 positions in the result.
van Vliet
3
65 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgKuiper
990
69 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
3
65 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgKuiper
990
69 kgHinault
990
62 kgBernaudeau
990
64 kgMcCormack
990
57 kgBracke
990
79 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
57
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | VAN VLIET Leo | 65 |
990 | RAAS Jan | 72 |
990 | THALER Klaus-Peter | 60 |
990 | VAN DEN HOEK Aad | 77 |
990 | KUIPER Hennie | 69 |
990 | HINAULT Bernard | 62 |
990 | BERNAUDEAU Jean-René | 64 |
990 | MCCORMACK Alan | 57 |
990 | BRACKE Ferdinand | 79 |
990 | DEN HERTOG Fedor | 76 |
990 | LASA Miguel María | 68 |
990 | NILSSON Sven-Åke | 63 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | ROSIERS Roger | 78 |
990 | KELLY Sean | 77 |
990 | BITTINGER René | 69 |