Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 11.4 * weight + 86
This means that on average for every extra kilogram weight a rider loses 11.4 positions in the result.
Hinault
2
62 kgZoetemelk
3
68 kgKuiper
990
69 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgBernaudeau
990
64 kgBracke
990
79 kgMcCormack
990
57 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgvan Vliet
990
65 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
2
62 kgZoetemelk
3
68 kgKuiper
990
69 kgRaas
990
72 kgThaler
990
60 kgvan den Hoek
990
77 kgBernaudeau
990
64 kgBracke
990
79 kgMcCormack
990
57 kgden Hertog
990
76 kgLasa
990
68 kgNilsson
990
63 kgvan Vliet
990
65 kgDuclos-Lassalle
990
73 kgRosiers
990
78 kgKelly
990
77 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
57
2
990
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | HINAULT Bernard | 62 |
| 3 | ZOETEMELK Joop | 68 |
| 990 | KUIPER Hennie | 69 |
| 990 | RAAS Jan | 72 |
| 990 | THALER Klaus-Peter | 60 |
| 990 | VAN DEN HOEK Aad | 77 |
| 990 | BERNAUDEAU Jean-René | 64 |
| 990 | BRACKE Ferdinand | 79 |
| 990 | MCCORMACK Alan | 57 |
| 990 | DEN HERTOG Fedor | 76 |
| 990 | LASA Miguel María | 68 |
| 990 | NILSSON Sven-Åke | 63 |
| 990 | VAN VLIET Leo | 65 |
| 990 | DUCLOS-LASSALLE Gilbert | 73 |
| 990 | ROSIERS Roger | 78 |
| 990 | KELLY Sean | 77 |
| 990 | BITTINGER René | 69 |