Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -10.8 * weight + 1619
This means that on average for every extra kilogram weight a rider loses -10.8 positions in the result.
Raas
1
72 kgMartinelli
2
74 kgGlaus
990
67 kgPriem
990
75 kgvan Vliet
990
65 kgVan Looy
990
75 kgHinault
990
62 kgSefton
990
68 kgGavazzi
990
67 kgSchepers
990
60 kgDierickx
990
74 kgNilsson
990
63 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kgDemeyer
990
85 kg
1
72 kgMartinelli
2
74 kgGlaus
990
67 kgPriem
990
75 kgvan Vliet
990
65 kgVan Looy
990
75 kgHinault
990
62 kgSefton
990
68 kgGavazzi
990
67 kgSchepers
990
60 kgDierickx
990
74 kgNilsson
990
63 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kgDemeyer
990
85 kg
Weight (KG) →
Result →
85
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | RAAS Jan | 72 |
2 | MARTINELLI Giuseppe | 74 |
990 | GLAUS Gilbert | 67 |
990 | PRIEM Cees | 75 |
990 | VAN VLIET Leo | 65 |
990 | VAN LOOY Frans | 75 |
990 | HINAULT Bernard | 62 |
990 | SEFTON Clyde | 68 |
990 | GAVAZZI Pierino | 67 |
990 | SCHEPERS Eddy | 60 |
990 | DIERICKX André | 74 |
990 | NILSSON Sven-Åke | 63 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | BITTINGER René | 69 |
990 | DEMEYER Marc | 85 |