Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 14.6 * weight - 152
This means that on average for every extra kilogram weight a rider loses 14.6 positions in the result.
Nilsson
1
63 kgZoetemelk
3
68 kgGlaus
990
67 kgRaas
990
72 kgPriem
990
75 kgvan Vliet
990
65 kgVan Looy
990
75 kgHinault
990
62 kgMartinelli
990
74 kgSefton
990
68 kgGavazzi
990
67 kgSchepers
990
60 kgDierickx
990
74 kgDuclos-Lassalle
990
73 kgDemeyer
990
85 kgBittinger
990
69 kg
1
63 kgZoetemelk
3
68 kgGlaus
990
67 kgRaas
990
72 kgPriem
990
75 kgvan Vliet
990
65 kgVan Looy
990
75 kgHinault
990
62 kgMartinelli
990
74 kgSefton
990
68 kgGavazzi
990
67 kgSchepers
990
60 kgDierickx
990
74 kgDuclos-Lassalle
990
73 kgDemeyer
990
85 kgBittinger
990
69 kg
Weight (KG) →
Result →
85
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | NILSSON Sven-Åke | 63 |
3 | ZOETEMELK Joop | 68 |
990 | GLAUS Gilbert | 67 |
990 | RAAS Jan | 72 |
990 | PRIEM Cees | 75 |
990 | VAN VLIET Leo | 65 |
990 | VAN LOOY Frans | 75 |
990 | HINAULT Bernard | 62 |
990 | MARTINELLI Giuseppe | 74 |
990 | SEFTON Clyde | 68 |
990 | GAVAZZI Pierino | 67 |
990 | SCHEPERS Eddy | 60 |
990 | DIERICKX André | 74 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | DEMEYER Marc | 85 |
990 | BITTINGER René | 69 |