Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -10 * weight + 1386
This means that on average for every extra kilogram weight a rider loses -10 positions in the result.
Kelly
3
77 kgDuclos-Lassalle
4
73 kgRoche
5
74 kgKuiper
12
69 kgZoetemelk
18
68 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgThaler
990
60 kgDe Wilde
990
70 kgPlanckaert
990
69 kgNilsson
990
63 kgDemol
990
72 kgDe Vlaeminck
990
74 kgvan der Poel
990
70 kg
3
77 kgDuclos-Lassalle
4
73 kgRoche
5
74 kgKuiper
12
69 kgZoetemelk
18
68 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgThaler
990
60 kgDe Wilde
990
70 kgPlanckaert
990
69 kgNilsson
990
63 kgDemol
990
72 kgDe Vlaeminck
990
74 kgvan der Poel
990
70 kg
Weight (KG) →
Result →
93
60
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | KELLY Sean | 77 |
4 | DUCLOS-LASSALLE Gilbert | 73 |
5 | ROCHE Stephen | 74 |
12 | KUIPER Hennie | 69 |
18 | ZOETEMELK Joop | 68 |
990 | SOLLEVELD Gerrit | 93 |
990 | BITTINGER René | 69 |
990 | DELGADO Pedro | 64 |
990 | POLLENTIER Michel | 62 |
990 | THALER Klaus-Peter | 60 |
990 | DE WILDE Etienne | 70 |
990 | PLANCKAERT Eddy | 69 |
990 | NILSSON Sven-Åke | 63 |
990 | DEMOL Dirk | 72 |
990 | DE VLAEMINCK Roger | 74 |
990 | VAN DER POEL Adrie | 70 |