Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 824
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
De Vlaeminck
2
74 kgDe Wilde
3
70 kgThaler
4
60 kgDuclos-Lassalle
5
73 kgKelly
8
77 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgPlanckaert
990
69 kgNilsson
990
63 kgKuiper
990
69 kgvan der Poel
990
70 kgDemol
990
72 kgZoetemelk
990
68 kgRoche
990
74 kg
2
74 kgDe Wilde
3
70 kgThaler
4
60 kgDuclos-Lassalle
5
73 kgKelly
8
77 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgPlanckaert
990
69 kgNilsson
990
63 kgKuiper
990
69 kgvan der Poel
990
70 kgDemol
990
72 kgZoetemelk
990
68 kgRoche
990
74 kg
Weight (KG) →
Result →
93
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | DE VLAEMINCK Roger | 74 |
3 | DE WILDE Etienne | 70 |
4 | THALER Klaus-Peter | 60 |
5 | DUCLOS-LASSALLE Gilbert | 73 |
8 | KELLY Sean | 77 |
990 | SOLLEVELD Gerrit | 93 |
990 | BITTINGER René | 69 |
990 | DELGADO Pedro | 64 |
990 | POLLENTIER Michel | 62 |
990 | PLANCKAERT Eddy | 69 |
990 | NILSSON Sven-Åke | 63 |
990 | KUIPER Hennie | 69 |
990 | VAN DER POEL Adrie | 70 |
990 | DEMOL Dirk | 72 |
990 | ZOETEMELK Joop | 68 |
990 | ROCHE Stephen | 74 |