Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 14.6 * weight - 472
This means that on average for every extra kilogram weight a rider loses 14.6 positions in the result.
Nilsson
1
63 kgDuclos-Lassalle
2
73 kgKelly
4
77 kgZoetemelk
5
68 kgPlanckaert
9
69 kgThaler
10
60 kgDe Wilde
11
70 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgDemol
990
72 kgDe Vlaeminck
990
74 kgKuiper
990
69 kgvan der Poel
990
70 kgRoche
990
74 kg
1
63 kgDuclos-Lassalle
2
73 kgKelly
4
77 kgZoetemelk
5
68 kgPlanckaert
9
69 kgThaler
10
60 kgDe Wilde
11
70 kgSolleveld
990
93 kgBittinger
990
69 kgDelgado
990
64 kgPollentier
990
62 kgDemol
990
72 kgDe Vlaeminck
990
74 kgKuiper
990
69 kgvan der Poel
990
70 kgRoche
990
74 kg
Weight (KG) →
Result →
93
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | NILSSON Sven-Åke | 63 |
2 | DUCLOS-LASSALLE Gilbert | 73 |
4 | KELLY Sean | 77 |
5 | ZOETEMELK Joop | 68 |
9 | PLANCKAERT Eddy | 69 |
10 | THALER Klaus-Peter | 60 |
11 | DE WILDE Etienne | 70 |
990 | SOLLEVELD Gerrit | 93 |
990 | BITTINGER René | 69 |
990 | DELGADO Pedro | 64 |
990 | POLLENTIER Michel | 62 |
990 | DEMOL Dirk | 72 |
990 | DE VLAEMINCK Roger | 74 |
990 | KUIPER Hennie | 69 |
990 | VAN DER POEL Adrie | 70 |
990 | ROCHE Stephen | 74 |