Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -9.3 * weight + 1456
This means that on average for every extra kilogram weight a rider loses -9.3 positions in the result.
Planckaert
1
69 kgDe Wilde
3
70 kgVanderaerden
5
74 kgFowler
990
71 kgMiller
990
72 kgKuiper
990
69 kgvan der Poel
990
70 kgKelly
990
77 kgBittinger
990
69 kgSergeant
990
76 kgBernaudeau
990
64 kgJourdan
990
64 kgZoetemelk
990
68 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgYates
990
74 kg
1
69 kgDe Wilde
3
70 kgVanderaerden
5
74 kgFowler
990
71 kgMiller
990
72 kgKuiper
990
69 kgvan der Poel
990
70 kgKelly
990
77 kgBittinger
990
69 kgSergeant
990
76 kgBernaudeau
990
64 kgJourdan
990
64 kgZoetemelk
990
68 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgYates
990
74 kg
Weight (KG) →
Result →
77
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Eddy | 69 |
3 | DE WILDE Etienne | 70 |
5 | VANDERAERDEN Eric | 74 |
990 | FOWLER Brian | 71 |
990 | MILLER Graeme | 72 |
990 | KUIPER Hennie | 69 |
990 | VAN DER POEL Adrie | 70 |
990 | KELLY Sean | 77 |
990 | BITTINGER René | 69 |
990 | SERGEANT Marc | 76 |
990 | BERNAUDEAU Jean-René | 64 |
990 | JOURDAN Christian | 64 |
990 | ZOETEMELK Joop | 68 |
990 | BOURREAU Bernard | 63 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | YATES Sean | 74 |