Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -11.3 * weight + 1412
This means that on average for every extra kilogram weight a rider loses -11.3 positions in the result.
Planckaert
2
69 kgKelly
3
77 kgDe Wilde
4
70 kgVanderaerden
6
74 kgBernaudeau
16
64 kgvan der Poel
17
70 kgMiller
990
72 kgFowler
990
71 kgKuiper
990
69 kgBittinger
990
69 kgSergeant
990
76 kgJourdan
990
64 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgYates
990
74 kgBourreau
990
63 kg
2
69 kgKelly
3
77 kgDe Wilde
4
70 kgVanderaerden
6
74 kgBernaudeau
16
64 kgvan der Poel
17
70 kgMiller
990
72 kgFowler
990
71 kgKuiper
990
69 kgBittinger
990
69 kgSergeant
990
76 kgJourdan
990
64 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgYates
990
74 kgBourreau
990
63 kg
Weight (KG) →
Result →
77
63
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | PLANCKAERT Eddy | 69 |
3 | KELLY Sean | 77 |
4 | DE WILDE Etienne | 70 |
6 | VANDERAERDEN Eric | 74 |
16 | BERNAUDEAU Jean-René | 64 |
17 | VAN DER POEL Adrie | 70 |
990 | MILLER Graeme | 72 |
990 | FOWLER Brian | 71 |
990 | KUIPER Hennie | 69 |
990 | BITTINGER René | 69 |
990 | SERGEANT Marc | 76 |
990 | JOURDAN Christian | 64 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | YATES Sean | 74 |
990 | BOURREAU Bernard | 63 |