Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -34.5 * weight + 3165
This means that on average for every extra kilogram weight a rider loses -34.5 positions in the result.
Kelly
1
77 kgPlanckaert
4
69 kgVanderaerden
5
74 kgDe Wilde
10
70 kgFowler
990
71 kgMiller
990
72 kgKuiper
990
69 kgvan der Poel
990
70 kgBittinger
990
69 kgSergeant
990
76 kgJourdan
990
64 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgYates
990
74 kgBourreau
990
63 kg
1
77 kgPlanckaert
4
69 kgVanderaerden
5
74 kgDe Wilde
10
70 kgFowler
990
71 kgMiller
990
72 kgKuiper
990
69 kgvan der Poel
990
70 kgBittinger
990
69 kgSergeant
990
76 kgJourdan
990
64 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kgYates
990
74 kgBourreau
990
63 kg
Weight (KG) →
Result →
77
63
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
4 | PLANCKAERT Eddy | 69 |
5 | VANDERAERDEN Eric | 74 |
10 | DE WILDE Etienne | 70 |
990 | FOWLER Brian | 71 |
990 | MILLER Graeme | 72 |
990 | KUIPER Hennie | 69 |
990 | VAN DER POEL Adrie | 70 |
990 | BITTINGER René | 69 |
990 | SERGEANT Marc | 76 |
990 | JOURDAN Christian | 64 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | YATES Sean | 74 |
990 | BOURREAU Bernard | 63 |