Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 787
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Planckaert
1
69 kgKelly
2
77 kgYates
3
74 kgWeltz
11
65 kgChiappucci
16
67 kgGlaus
21
67 kgMarie
27
68 kgWampers
29
82 kgRoche
990
74 kgSchepers
990
60 kgDelgado
990
64 kgvan der Poel
990
70 kgWinnen
990
60 kgVanderaerden
990
74 kgMadiot
990
68 kgFignon
990
67 kgBauer
990
72 kgZoetemelk
990
68 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
1
69 kgKelly
2
77 kgYates
3
74 kgWeltz
11
65 kgChiappucci
16
67 kgGlaus
21
67 kgMarie
27
68 kgWampers
29
82 kgRoche
990
74 kgSchepers
990
60 kgDelgado
990
64 kgvan der Poel
990
70 kgWinnen
990
60 kgVanderaerden
990
74 kgMadiot
990
68 kgFignon
990
67 kgBauer
990
72 kgZoetemelk
990
68 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
Weight (KG) →
Result →
93
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Eddy | 69 |
2 | KELLY Sean | 77 |
3 | YATES Sean | 74 |
11 | WELTZ Johnny | 65 |
16 | CHIAPPUCCI Claudio | 67 |
21 | GLAUS Gilbert | 67 |
27 | MARIE Thierry | 68 |
29 | WAMPERS Jean-Marie | 82 |
990 | ROCHE Stephen | 74 |
990 | SCHEPERS Eddy | 60 |
990 | DELGADO Pedro | 64 |
990 | VAN DER POEL Adrie | 70 |
990 | WINNEN Peter | 60 |
990 | VANDERAERDEN Eric | 74 |
990 | MADIOT Marc | 68 |
990 | FIGNON Laurent | 67 |
990 | BAUER Steve | 72 |
990 | ZOETEMELK Joop | 68 |
990 | SOLLEVELD Gerrit | 93 |
990 | ELLIOTT Malcolm | 76 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | DEMIERRE Serge | 70 |