Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight + 539
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Kelly
1
77 kgRoche
2
74 kgFignon
5
67 kgVanderaerden
9
74 kgDelgado
18
64 kgZoetemelk
22
68 kgChiappucci
990
67 kgSchepers
990
60 kgvan der Poel
990
70 kgWinnen
990
60 kgMadiot
990
68 kgMarie
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
1
77 kgRoche
2
74 kgFignon
5
67 kgVanderaerden
9
74 kgDelgado
18
64 kgZoetemelk
22
68 kgChiappucci
990
67 kgSchepers
990
60 kgvan der Poel
990
70 kgWinnen
990
60 kgMadiot
990
68 kgMarie
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
Weight (KG) →
Result →
93
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
2 | ROCHE Stephen | 74 |
5 | FIGNON Laurent | 67 |
9 | VANDERAERDEN Eric | 74 |
18 | DELGADO Pedro | 64 |
22 | ZOETEMELK Joop | 68 |
990 | CHIAPPUCCI Claudio | 67 |
990 | SCHEPERS Eddy | 60 |
990 | VAN DER POEL Adrie | 70 |
990 | WINNEN Peter | 60 |
990 | MADIOT Marc | 68 |
990 | MARIE Thierry | 68 |
990 | BAUER Steve | 72 |
990 | YATES Sean | 74 |
990 | WELTZ Johnny | 65 |
990 | WAMPERS Jean-Marie | 82 |
990 | SOLLEVELD Gerrit | 93 |
990 | ELLIOTT Malcolm | 76 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | DEMIERRE Serge | 70 |