Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 6.9 * weight + 187
This means that on average for every extra kilogram weight a rider loses 6.9 positions in the result.
Marie
2
68 kgKelly
4
77 kgRoche
6
74 kgFignon
7
67 kgDelgado
11
64 kgZoetemelk
19
68 kgSchepers
990
60 kgChiappucci
990
67 kgvan der Poel
990
70 kgWinnen
990
60 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDemierre
990
70 kgDuclos-Lassalle
990
73 kg
2
68 kgKelly
4
77 kgRoche
6
74 kgFignon
7
67 kgDelgado
11
64 kgZoetemelk
19
68 kgSchepers
990
60 kgChiappucci
990
67 kgvan der Poel
990
70 kgWinnen
990
60 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDemierre
990
70 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
93
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | MARIE Thierry | 68 |
4 | KELLY Sean | 77 |
6 | ROCHE Stephen | 74 |
7 | FIGNON Laurent | 67 |
11 | DELGADO Pedro | 64 |
19 | ZOETEMELK Joop | 68 |
990 | SCHEPERS Eddy | 60 |
990 | CHIAPPUCCI Claudio | 67 |
990 | VAN DER POEL Adrie | 70 |
990 | WINNEN Peter | 60 |
990 | MADIOT Marc | 68 |
990 | BAUER Steve | 72 |
990 | YATES Sean | 74 |
990 | WELTZ Johnny | 65 |
990 | WAMPERS Jean-Marie | 82 |
990 | SOLLEVELD Gerrit | 93 |
990 | ELLIOTT Malcolm | 76 |
990 | DEMIERRE Serge | 70 |
990 | DUCLOS-LASSALLE Gilbert | 73 |