Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 866
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Fignon
1
67 kgKelly
2
77 kgRoche
5
74 kgChiappucci
20
67 kgSchepers
990
60 kgDelgado
990
64 kgvan der Poel
990
70 kgWinnen
990
60 kgMarie
990
68 kgMadiot
990
68 kgBauer
990
72 kgWeltz
990
65 kgYates
990
74 kgWampers
990
82 kgSolleveld
990
93 kgZoetemelk
990
68 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
1
67 kgKelly
2
77 kgRoche
5
74 kgChiappucci
20
67 kgSchepers
990
60 kgDelgado
990
64 kgvan der Poel
990
70 kgWinnen
990
60 kgMarie
990
68 kgMadiot
990
68 kgBauer
990
72 kgWeltz
990
65 kgYates
990
74 kgWampers
990
82 kgSolleveld
990
93 kgZoetemelk
990
68 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
Weight (KG) →
Result →
93
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | FIGNON Laurent | 67 |
2 | KELLY Sean | 77 |
5 | ROCHE Stephen | 74 |
20 | CHIAPPUCCI Claudio | 67 |
990 | SCHEPERS Eddy | 60 |
990 | DELGADO Pedro | 64 |
990 | VAN DER POEL Adrie | 70 |
990 | WINNEN Peter | 60 |
990 | MARIE Thierry | 68 |
990 | MADIOT Marc | 68 |
990 | BAUER Steve | 72 |
990 | WELTZ Johnny | 65 |
990 | YATES Sean | 74 |
990 | WAMPERS Jean-Marie | 82 |
990 | SOLLEVELD Gerrit | 93 |
990 | ZOETEMELK Joop | 68 |
990 | ELLIOTT Malcolm | 76 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | DEMIERRE Serge | 70 |