Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.9 * weight + 1059
This means that on average for every extra kilogram weight a rider loses -3.9 positions in the result.
Kelly
5
77 kgvan der Poel
7
70 kgRoche
15
74 kgFignon
20
67 kgChiappucci
990
67 kgSchepers
990
60 kgDelgado
990
64 kgWinnen
990
60 kgMarie
990
68 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgZoetemelk
990
68 kgSolleveld
990
93 kgElliott
990
76 kgDemierre
990
70 kgDuclos-Lassalle
990
73 kg
5
77 kgvan der Poel
7
70 kgRoche
15
74 kgFignon
20
67 kgChiappucci
990
67 kgSchepers
990
60 kgDelgado
990
64 kgWinnen
990
60 kgMarie
990
68 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgZoetemelk
990
68 kgSolleveld
990
93 kgElliott
990
76 kgDemierre
990
70 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
93
60
5
990
# | Rider | Weight (KG) |
---|---|---|
5 | KELLY Sean | 77 |
7 | VAN DER POEL Adrie | 70 |
15 | ROCHE Stephen | 74 |
20 | FIGNON Laurent | 67 |
990 | CHIAPPUCCI Claudio | 67 |
990 | SCHEPERS Eddy | 60 |
990 | DELGADO Pedro | 64 |
990 | WINNEN Peter | 60 |
990 | MARIE Thierry | 68 |
990 | MADIOT Marc | 68 |
990 | BAUER Steve | 72 |
990 | YATES Sean | 74 |
990 | WELTZ Johnny | 65 |
990 | WAMPERS Jean-Marie | 82 |
990 | ZOETEMELK Joop | 68 |
990 | SOLLEVELD Gerrit | 93 |
990 | ELLIOTT Malcolm | 76 |
990 | DEMIERRE Serge | 70 |
990 | DUCLOS-LASSALLE Gilbert | 73 |