Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight + 582
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Roche
1
74 kgKelly
2
77 kgFignon
4
67 kgMarie
15
68 kgvan der Poel
26
70 kgZoetemelk
28
68 kgSchepers
990
60 kgChiappucci
990
67 kgDelgado
990
64 kgWinnen
990
60 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
1
74 kgKelly
2
77 kgFignon
4
67 kgMarie
15
68 kgvan der Poel
26
70 kgZoetemelk
28
68 kgSchepers
990
60 kgChiappucci
990
67 kgDelgado
990
64 kgWinnen
990
60 kgMadiot
990
68 kgBauer
990
72 kgYates
990
74 kgWeltz
990
65 kgWampers
990
82 kgSolleveld
990
93 kgElliott
990
76 kgDuclos-Lassalle
990
73 kgDemierre
990
70 kg
Weight (KG) →
Result →
93
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ROCHE Stephen | 74 |
2 | KELLY Sean | 77 |
4 | FIGNON Laurent | 67 |
15 | MARIE Thierry | 68 |
26 | VAN DER POEL Adrie | 70 |
28 | ZOETEMELK Joop | 68 |
990 | SCHEPERS Eddy | 60 |
990 | CHIAPPUCCI Claudio | 67 |
990 | DELGADO Pedro | 64 |
990 | WINNEN Peter | 60 |
990 | MADIOT Marc | 68 |
990 | BAUER Steve | 72 |
990 | YATES Sean | 74 |
990 | WELTZ Johnny | 65 |
990 | WAMPERS Jean-Marie | 82 |
990 | SOLLEVELD Gerrit | 93 |
990 | ELLIOTT Malcolm | 76 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | DEMIERRE Serge | 70 |