Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Moreau
1
77 kgInduráin
2
76 kgFignon
3
67 kgRoche
4
74 kgChiappucci
5
67 kgWalton
8
68 kgArgentin
10
66 kgEkimov
12
69 kgMuseeuw
15
71 kgLeMond
16
67 kgJalabert
23
66 kgRué
24
74 kgBruyneel
25
71 kgDuclos-Lassalle
27
73 kgHodge
37
74 kgBölts
44
73 kgBugno
45
68 kgRiis
48
71 kgElliott
49
76 kg
1
77 kgInduráin
2
76 kgFignon
3
67 kgRoche
4
74 kgChiappucci
5
67 kgWalton
8
68 kgArgentin
10
66 kgEkimov
12
69 kgMuseeuw
15
71 kgLeMond
16
67 kgJalabert
23
66 kgRué
24
74 kgBruyneel
25
71 kgDuclos-Lassalle
27
73 kgHodge
37
74 kgBölts
44
73 kgBugno
45
68 kgRiis
48
71 kgElliott
49
76 kg
Weight (KG) →
Result →
77
66
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | MOREAU Francis | 77 |
2 | INDURÁIN Miguel | 76 |
3 | FIGNON Laurent | 67 |
4 | ROCHE Stephen | 74 |
5 | CHIAPPUCCI Claudio | 67 |
8 | WALTON Brian | 68 |
10 | ARGENTIN Moreno | 66 |
12 | EKIMOV Viatcheslav | 69 |
15 | MUSEEUW Johan | 71 |
16 | LEMOND Greg | 67 |
23 | JALABERT Laurent | 66 |
24 | RUÉ Gérard | 74 |
25 | BRUYNEEL Johan | 71 |
27 | DUCLOS-LASSALLE Gilbert | 73 |
37 | HODGE Stephen | 74 |
44 | BÖLTS Udo | 73 |
45 | BUGNO Gianni | 68 |
48 | RIIS Bjarne | 71 |
49 | ELLIOTT Malcolm | 76 |