Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.5 * weight - 140
This means that on average for every extra kilogram weight a rider loses 2.5 positions in the result.
Rominger
1
65 kgRoche
2
74 kgJalabert
5
66 kgFignon
7
67 kgEarley
9
62 kgGayant
11
69 kgMadiot
17
68 kgWauters
22
73 kgLeMond
30
67 kgBourguignon
31
72 kgYates
34
74 kgLeysen
38
75 kgDe Wilde
41
70 kgBugno
42
68 kgHundertmarck
43
72 kgDuclos-Lassalle
46
73 kgPeeters
47
76 kgBauer
50
72 kgMarie
55
68 kgRiis
56
71 kgArgentin
60
66 kgSchur
61
73 kgAndreu
67
77 kg
1
65 kgRoche
2
74 kgJalabert
5
66 kgFignon
7
67 kgEarley
9
62 kgGayant
11
69 kgMadiot
17
68 kgWauters
22
73 kgLeMond
30
67 kgBourguignon
31
72 kgYates
34
74 kgLeysen
38
75 kgDe Wilde
41
70 kgBugno
42
68 kgHundertmarck
43
72 kgDuclos-Lassalle
46
73 kgPeeters
47
76 kgBauer
50
72 kgMarie
55
68 kgRiis
56
71 kgArgentin
60
66 kgSchur
61
73 kgAndreu
67
77 kg
Weight (KG) →
Result →
77
62
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | ROMINGER Tony | 65 |
2 | ROCHE Stephen | 74 |
5 | JALABERT Laurent | 66 |
7 | FIGNON Laurent | 67 |
9 | EARLEY Martin | 62 |
11 | GAYANT Martial | 69 |
17 | MADIOT Marc | 68 |
22 | WAUTERS Marc | 73 |
30 | LEMOND Greg | 67 |
31 | BOURGUIGNON Thierry | 72 |
34 | YATES Sean | 74 |
38 | LEYSEN Bart | 75 |
41 | DE WILDE Etienne | 70 |
42 | BUGNO Gianni | 68 |
43 | HUNDERTMARCK Kai | 72 |
46 | DUCLOS-LASSALLE Gilbert | 73 |
47 | PEETERS Wilfried | 76 |
50 | BAUER Steve | 72 |
55 | MARIE Thierry | 68 |
56 | RIIS Bjarne | 71 |
60 | ARGENTIN Moreno | 66 |
61 | SCHUR Jan | 73 |
67 | ANDREU Frankie | 77 |