Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 11
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kirsipuu
1
80 kgHondo
2
73 kgO'Grady
3
73 kgNazon
4
74 kgBaldato
5
60 kgKlemenčič
6
69 kgFornaciari
7
80 kgSimon
8
70 kgPlanckaert
9
70 kgHoffman
10
80 kgMartinello
12
71 kgGaumont
13
77 kgSteels
14
73 kgHincapie
16
83 kgBrochard
17
68 kgLombardi
18
73 kgKivilev
19
64 kgClinger
20
77 kg
1
80 kgHondo
2
73 kgO'Grady
3
73 kgNazon
4
74 kgBaldato
5
60 kgKlemenčič
6
69 kgFornaciari
7
80 kgSimon
8
70 kgPlanckaert
9
70 kgHoffman
10
80 kgMartinello
12
71 kgGaumont
13
77 kgSteels
14
73 kgHincapie
16
83 kgBrochard
17
68 kgLombardi
18
73 kgKivilev
19
64 kgClinger
20
77 kg
Weight (KG) →
Result →
83
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KIRSIPUU Jaan | 80 |
2 | HONDO Danilo | 73 |
3 | O'GRADY Stuart | 73 |
4 | NAZON Jean-Patrick | 74 |
5 | BALDATO Fabio | 60 |
6 | KLEMENČIČ Zoran | 69 |
7 | FORNACIARI Paolo | 80 |
8 | SIMON François | 70 |
9 | PLANCKAERT Jo | 70 |
10 | HOFFMAN Tristan | 80 |
12 | MARTINELLO Silvio | 71 |
13 | GAUMONT Philippe | 77 |
14 | STEELS Tom | 73 |
16 | HINCAPIE George | 83 |
17 | BROCHARD Laurent | 68 |
18 | LOMBARDI Giovanni | 73 |
19 | KIVILEV Andrei | 64 |
20 | CLINGER David | 77 |