Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Hamburger
1
58 kgNocentini
2
60 kgTosatto
3
74 kgHoffman
5
80 kgHincapie
6
83 kgPeers
7
73 kgCasagrande
8
64 kgAerts
9
68 kgVerheyen
10
68 kgBrochard
11
68 kgOsa
12
65 kgDufaux
13
60 kgBelli
14
64 kgVinokourov
15
68 kgGougot
16
72 kgAebersold
17
58 kgKivilev
18
64 kgMancebo
20
64 kgTchmil
21
75 kg
1
58 kgNocentini
2
60 kgTosatto
3
74 kgHoffman
5
80 kgHincapie
6
83 kgPeers
7
73 kgCasagrande
8
64 kgAerts
9
68 kgVerheyen
10
68 kgBrochard
11
68 kgOsa
12
65 kgDufaux
13
60 kgBelli
14
64 kgVinokourov
15
68 kgGougot
16
72 kgAebersold
17
58 kgKivilev
18
64 kgMancebo
20
64 kgTchmil
21
75 kg
Weight (KG) →
Result →
83
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | HAMBURGER Bo | 58 |
2 | NOCENTINI Rinaldo | 60 |
3 | TOSATTO Matteo | 74 |
5 | HOFFMAN Tristan | 80 |
6 | HINCAPIE George | 83 |
7 | PEERS Chris | 73 |
8 | CASAGRANDE Francesco | 64 |
9 | AERTS Mario | 68 |
10 | VERHEYEN Geert | 68 |
11 | BROCHARD Laurent | 68 |
12 | OSA Unai | 65 |
13 | DUFAUX Laurent | 60 |
14 | BELLI Wladimir | 64 |
15 | VINOKOUROV Alexandre | 68 |
16 | GOUGOT Fabrice | 72 |
17 | AEBERSOLD Niki | 58 |
18 | KIVILEV Andrei | 64 |
20 | MANCEBO Francisco | 64 |
21 | TCHMIL Andrei | 75 |