Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Hondo
1
73 kgDe Waele
2
62 kgVan Petegem
3
70 kgO'Grady
4
73 kgTchmil
5
75 kgGuidi
6
73 kgPlanckaert
7
70 kgFrigo
8
66 kgMagnien
9
68 kgAzevedo
10
59 kgZülle
11
72 kgWadecki
12
70 kgVinokourov
13
68 kgMattan
14
69 kgHushovd
15
83 kgBartoli
16
65 kgNazon
17
74 kgTosatto
18
74 kgHoffman
19
80 kgGaumont
20
77 kg
1
73 kgDe Waele
2
62 kgVan Petegem
3
70 kgO'Grady
4
73 kgTchmil
5
75 kgGuidi
6
73 kgPlanckaert
7
70 kgFrigo
8
66 kgMagnien
9
68 kgAzevedo
10
59 kgZülle
11
72 kgWadecki
12
70 kgVinokourov
13
68 kgMattan
14
69 kgHushovd
15
83 kgBartoli
16
65 kgNazon
17
74 kgTosatto
18
74 kgHoffman
19
80 kgGaumont
20
77 kg
Weight (KG) →
Result →
83
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | HONDO Danilo | 73 |
2 | DE WAELE Fabien | 62 |
3 | VAN PETEGEM Peter | 70 |
4 | O'GRADY Stuart | 73 |
5 | TCHMIL Andrei | 75 |
6 | GUIDI Fabrizio | 73 |
7 | PLANCKAERT Jo | 70 |
8 | FRIGO Dario | 66 |
9 | MAGNIEN Emmanuel | 68 |
10 | AZEVEDO José Bento | 59 |
11 | ZÜLLE Alex | 72 |
12 | WADECKI Piotr | 70 |
13 | VINOKOUROV Alexandre | 68 |
14 | MATTAN Nico | 69 |
15 | HUSHOVD Thor | 83 |
16 | BARTOLI Michele | 65 |
17 | NAZON Jean-Patrick | 74 |
18 | TOSATTO Matteo | 74 |
19 | HOFFMAN Tristan | 80 |
20 | GAUMONT Philippe | 77 |